Intégrale et primitive

Exercice

Déterminer une primitive des fonctions suivantes.

1.
$$x \mapsto x$$

$$2. \ x \mapsto 1$$

3.
$$x \mapsto 2x$$

$$4. x \mapsto 3x$$

5.
$$x \mapsto x - 1$$

6.
$$x \mapsto e^x$$

7.
$$x \mapsto e^x + 1$$

8.
$$x \mapsto \frac{1}{x}$$

9.
$$x \mapsto \frac{1}{x+1}$$

10.
$$x \mapsto \sin(x) + 1$$

$$11. \ x \mapsto \frac{2}{x+1}$$

$$12. \ x \mapsto \frac{2x}{x^2 + 1}$$

13.
$$x \mapsto \tan(x)$$

14.
$$x \mapsto \frac{1}{2\sqrt{x}}$$

15.
$$x \mapsto \frac{\cos(x)}{\sqrt{\sin(x) + 2}}$$

16.
$$x \mapsto \frac{\cos(x)}{\sin(x) + 2}$$

17.
$$x \mapsto \frac{e^x}{e^x + 1}$$

18.
$$x \mapsto 2xe^{x^2}$$

19.
$$x \mapsto \cos^2(x)$$

20.
$$x \mapsto \sin^2(x)$$

21.
$$x \mapsto xe^{x^2}$$

22.
$$x \mapsto \sin(x)e^{\cos(x)}$$

Exercice

Calculer les intégrales suivantes.

1.
$$\int_{-1}^{1} x^5 dx$$

2.
$$\int_0^3 x^2 + 1 \ dx$$

3.
$$\int_{-2}^{-1} (x+1)^2 dx$$

4.
$$\int_{5}^{3} 2x + 1 \ dx$$

5.
$$\int_{1}^{e} \frac{1}{x} dx$$

6.
$$\int_{1}^{1} 2xe^{x^2+1} dx$$

7.
$$\int_{-\pi}^{\pi} \sin^2(x) dx$$

8.
$$\int_{-\pi}^{\pi} \sin(x) dx$$

9.
$$\int_{0}^{1} \frac{1}{x+1} dx$$

10.
$$\int_{-3}^{3} e^{3x+1} dx$$

11.
$$\int_{0}^{1} x e^{x^{2} + x} + \frac{1}{2} e^{x^{2} + x} dx$$

12.
$$\int_{-\ln(2)}^{\ln(3)} (1 - 2e^{-t}) dx$$

13.
$$\int_{1}^{2} \frac{1}{2\sqrt{x}} dx$$

14.
$$\int_0^1 \frac{2t}{\sqrt{1+t^2}} dt$$

$$15. \int_{e}^{e^2} \frac{1}{x \ln(x)} dx$$

16.
$$\int_{1}^{e} \frac{\ln(x)}{x} dx$$

17.
$$\int_0^{\pi} \frac{1}{\cos^2(x)} \, dx$$

Exercice

Calculer les intégrales suivantes en utilisant une intégration par partie.

$$1. \int_0^1 x e^{-x} dx$$

5.
$$\int_0^1 (1 - 2x^2) e^{-x} dx$$

$$2. \int_{1}^{e} x \ln(x) dx$$

6.
$$\int_{0}^{\frac{\pi}{4}} x^{2} \cos(3x) dx$$

$$3. \int_{1}^{2} \ln(x) dx$$

7.
$$\int_{2}^{\pi} e^{3x} \sin(x) dx$$

4.
$$\int_{0}^{\frac{\pi}{4}} x \sin(2x) dx$$

Exercice

On pose $I = \int_1^{e^{\pi}} sin(ln(x)) dx$ et $J = \int_1^{e^{\pi}} cos(ln(x)) dx$.

- 1. En intégrant par partie I déterminer la valeur de I+J.
- 2. En intégrant par partie J déterminer la valeur de I J.
- 3. En déduire la valeur de I et de J.

Exercice

Pour tout $n \in \mathbb{N}$, on considère la suite $(I_n)_n$ définie par $I_n = \int_0^{\pi} \frac{\pi}{2} \sin^n(x) dx$.

- 1. Calculer I_0 et I_1 .
- 2. Montrer que pour tout entier $n \in \mathbb{N}$, $I_n = \frac{n-1}{2}I_{n-2}$
- 3. En déduire les valeurs de I_{2k} et I_{2k+1} pour tout $k \in \mathbb{N}$.

Exercice

 $\mathrm{On\ consid\`ere}\ I = \int_0^{\frac{\pi}{4}} \frac{cos(x)}{cos(x) + sin(x)}\ dx\ \mathrm{et}\ J = \int_0^{\frac{\pi}{4}} \frac{sin(x)}{cos(x) + sin(x)}\ dx.$

- 1. Calculer I + J.
- 2. Calculer I J.
- 3. En déduire la valeur de I et J.

Exercice

On considère $I=\int_0^{\frac{\pi}{4}}\frac{1}{cos^2(x)}\ dx\ \mathrm{et}\ J=\int_0^{\frac{\pi}{4}}\frac{1}{cos^4(x)}\ dx.$

- 1. Rappeler la dérivé de la fonction tangente et en déduire la valeur de I.
- 2. On considère la fonction $f: \left[0; \frac{\pi}{4}\right] \to \mathbb{R}, x \mapsto \frac{\sin(x)}{\cos^3(x)}$
 - (a) Calculer la dérivé f' de f.
 - (b) En déduire une relation entre I et J puis donner la valeur de J.

2