Nombre complexe - Forme polaire

Exercice 1

Mettre les nombre suivants sous forme cartésienne.

3.
$$e^{i\vartheta} + e^{2i\vartheta}$$
 où $\vartheta \in \mathbb{R}$.

$$4. \frac{1}{1+e^{i}\frac{\pi}{4}}$$

2.
$$e^{1+i}$$

Exercice 2

Mettre les nombre suivants sous forme polaire.

1.
$$i - \sqrt{3}$$

2.
$$\sqrt{2}(1-i)$$

3.
$$7 + 7i$$

4.
$$\frac{1}{2} + \frac{i}{2}\sqrt{3}$$

Exercice 3

Déterminer le module et l'argument des nombres suivants.

5.
$$1 + i$$

11.
$$1 + 2e^{i\frac{\pi}{2}}$$

$$2. -1$$
 $3. i$

6.
$$1 - i$$

7. $\sqrt{12} - 2i$
8. e^{i}

$$\frac{\pi}{i}$$

12.
$$i + e^{\frac{\pi}{4}}$$

10.
$$ie^{i\frac{\pi}{4}}$$

Exercice 4

Calculer le module et l'argument des nombres $u = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et v = 1 - i. En déduire le module et l'argument de

Exercice 5

Soient $z_1 = e^{i\frac{\pi}{3}}$ et $z_2 = e^{-i\frac{\pi}{4}}$.

- 1. Écrire z_1 et z_2 sous forme algébrique.
- 2. En déduire la forme exponentielle et cartésienne de z_1z_2 .
- 3. En déduire la valeur de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$

Exercice 6

Soient $\vartheta \in \mathbb{R}$ et $z = e^{i\vartheta}$. Déterminer le module et l'argument de 1+z et $1+z+z^2$.

Exercice 7

Déterminer la partie réelle, la partie imaginaire, le module et l'argument de $\frac{1}{1+e^{i\alpha}}$ où $\alpha \in [0;\pi[$.

Exercice 8

Déterminer la partie réelle, la partie imaginaire, le module et l'argument de $\frac{1}{1-e^{i\alpha}}$ où $\alpha \in]0;\pi]$.

Exercice 9

- 1. Calculer le module et l'argument de $\frac{1+\mathfrak{i}}{\sqrt{2}}$.
- 2. Calculer les racines carrés de $\frac{1+\mathfrak{i}}{\sqrt{2}}$.
- 3. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.
- 4. En raisonnant de la même manière, trouver les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 10

Linéariser les expressions suivantes $(\vartheta \in \mathbb{R})$.

1. $\cos^2(\vartheta)$

4. $\cos(\vartheta)\sin^3(\vartheta)$

7. $\cos(\vartheta)\sin^4(\vartheta)$

 $2. \sin^2(\vartheta)$

5. $\cos^2(\vartheta)\sin(\vartheta)$

8. $\sin^5(\vartheta)$

3. $\cos^2(\vartheta)\sin^2(\vartheta)$

- 6. $\cos^2(\theta)\sin^3(\theta)$
- 9. $\cos^6(\vartheta)$

Exercice 11

Délinéariser les expressions suivantes $(\vartheta \in \mathbb{R})$.

- 1. cos(2ϑ)
- 2. $sin(3\vartheta)$
- 3. cos(4ϑ)
- 4. sin(5ϑ)