Exercice
Faisons apparaître une inéquation de signe :
\begin{eqnarray*}
\dfrac{-3x-\dfrac{23}{4}}{-3x+\dfrac{23}{4}}\geqslant \dfrac{-3x+\dfrac{23}{4}}{-3x-\dfrac{23}{4}} & \Longleftrightarrow & \dfrac{-3x-\dfrac{23}{4}}{-3x+\dfrac{23}{4}}-\dfrac{-3x+\dfrac{23}{4}}{-3x-\dfrac{23}{4}}\geqslant 0\\ & \Longleftrightarrow & \dfrac{\left(-3x-\dfrac{23}{4}\right)^2}{\left(-3x+\dfrac{23}{4}\right)\left(-3x-\dfrac{23}{4}\right)}-\dfrac{\left(-3x+\dfrac{23}{4}\right)^2}{\left(-3x-\dfrac{23}{4}\right)\left(-3x+\dfrac{23}{4}\right)}\geqslant 0\\ & \Longleftrightarrow & \dfrac{\left(-3x-\dfrac{23}{4}\right)^2-\left(-3x+\dfrac{23}{4}\right)^2}{\left(-3x+\dfrac{23}{4}\right)\left(-3x-\dfrac{23}{4}\right)}\geqslant 0\\ & \Longleftrightarrow & \dfrac{69x}{\left(-3x+\dfrac{23}{4}\right)\left(-3x-\dfrac{23}{4}\right)}\geqslant 0\end{eqnarray*}
Solutionnons chacun des facteurs.
Le facteur au numérateur s'annule trivialement en \( 0 \) .
Les deux facteurs aux dénominateurs s'annulent en \( -\dfrac{23}{12}\) et \( \dfrac{23}{12}\) (cela se retrouve par la résolution d'une équation au produit nul) et sont donc des valeurs interdites (puisqu'au dénominateur).
Dressons le tableau de signe :
La lecture du tableau donne :
\[
S=\left]-\dfrac{23}{12} ; 0 \right]\cup\left] \dfrac{23}{12} ; +\infty\right[
\]