\( %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mes commandes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\multirows}[3]{\multirow{#1}{#2}{$#3$}}%pour rester en mode math \renewcommand{\arraystretch}{1.3}%pour augmenter la taille des case \newcommand{\point}[1]{\marginnote{\small\vspace*{-1em} #1}}%pour indiquer les points ou le temps \newcommand{\dpl}[1]{\displaystyle{#1}}%megamode \newcommand{\A}{\mathscr{A}} \newcommand{\LN}{\mathscr{N}} \newcommand{\LL}{\mathscr{L}} \newcommand{\K}{\mathbb{K}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\M}{\mathcal{M}} \newcommand{\D}{\mathbb{D}} \newcommand{\E}{\mathcal{E}} \renewcommand{\P}{\mathcal{P}} \newcommand{\G}{\mathcal{G}} \newcommand{\Kk}{\mathcal{K}} \newcommand{\Cc}{\mathcal{C}} \newcommand{\Zz}{\mathcal{Z}} \newcommand{\Ss}{\mathcal{S}} \newcommand{\B}{\mathbb{B}} \newcommand{\inde}{\bot\!\!\!\bot} \newcommand{\Proba}{\mathbb{P}} \newcommand{\Esp}[1]{\dpl{\mathbb{E}\left(#1\right)}} \newcommand{\Var}[1]{\dpl{\mathbb{V}\left(#1\right)}} \newcommand{\Cov}[1]{\dpl{Cov\left(#1\right)}} \newcommand{\base}{\mathcal{B}} \newcommand{\Som}{\textbf{Som}} \newcommand{\Chain}{\textbf{Chain}} \newcommand{\Ar}{\textbf{Ar}} \newcommand{\Arc}{\textbf{Arc}} \newcommand{\Min}{\text{Min}} \newcommand{\Max}{\text{Max}} \newcommand{\Ker}{\text{Ker}} \renewcommand{\Im}{\text{Im}} \newcommand{\Sup}{\text{Sup}} \newcommand{\Inf}{\text{Inf}} \renewcommand{\det}{\texttt{det}} \newcommand{\GL}{\text{GL}} \newcommand{\crossmark}{\text{\ding{55}}} \renewcommand{\checkmark}{\text{\ding{51}}} \newcommand{\Card}{\sharp} \newcommand{\Surligne}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\SurligneMM}[2]{\text{\colorbox{#1}{ #2 }}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \renewcommand{\lim}[1]{\underset{#1}{lim}\,} \newcommand{\nonor}[1]{\left|#1\right|} \newcommand{\Un}{1\!\!1} \newcommand{\sepon}{\setlength{\columnseprule}{0.5pt}} \newcommand{\sepoff}{\setlength{\columnseprule}{0pt}} \newcommand{\flux}{Flux} \newcommand{\Cpp}{\texttt{C++\ }} \newcommand{\Python}{\texttt{Python\ }} %\newcommand{\comb}[2]{\begin{pmatrix} #1\\ #2\end{pmatrix}} \newcommand{\comb}[2]{C_{#1}^{#2}} \newcommand{\arrang}[2]{A_{#1}^{#2}} \newcommand{\supp}[1]{Supp\left(#1\right)} \newcommand{\BB}{\mathcal{B}} \newcommand{\arc}[1]{\overset{\rotatebox{90}{)}}{#1}} \newcommand{\modpi}{\equiv_{2\pi}} \renewcommand{\Re}{Re} \renewcommand{\Im}{Im} \renewcommand{\bar}[1]{\overline{#1}} \newcommand{\mat}{\mathcal{M}} \newcommand{\und}[1]{{\mathbf{\color{red}\underline{#1}}}} \newcommand{\rdots}{\text{\reflectbox{$\ddots$}}} \newcommand{\Compa}{Compa} \newcommand{\dint}{\dpl{\int}} \newcommand{\intEFF}[2]{\left[\!\left[#1 ; #2\right]\!\right]} \newcommand{\intEFO}[2]{\left[\!\left[#1 ; #2\right[\!\right[} \newcommand{\intEOF}[2]{\left]\!\left]#1 ; #2\right]\!\right]} \newcommand{\intEOO}[2]{\left]\!\left]#1 ; #2\right[\!\right[} \newcommand{\ou}{\vee} \newcommand{\et}{\wedge} \newcommand{\non}{\neg} \newcommand{\implique}{\Rightarrow} \newcommand{\equivalent}{\Leftrightarrow} \newcommand{\Ab}{\overline{A}} \newcommand{\Bb}{\overline{B}} \newcommand{\Cb}{\overline{C}} \newcommand{\Cl}{\texttt{Cl}} \newcommand{\ab}{\overline{a}} \newcommand{\bb}{\overline{b}} \newcommand{\cb}{\overline{c}} \newcommand{\Rel}{\mathcal{R}} \newcommand{\superepsilon}{\varepsilon\!\!\varepsilon} \newcommand{\supere}{e\!\!e} \makeatletter \newenvironment{console}{\noindent\color{white}\begin{lrbox}{\@tempboxa}\begin{minipage}{\columnwidth} \ttfamily \bfseries\vspace*{0.5cm}} {\vspace*{0.5cm}\end{minipage}\end{lrbox}\colorbox{black}{\usebox{\@tempboxa}} } \makeatother \def\ie{\textit{i.e. }} \def\cf{\textit{c.f. }} \def\vide{ { $ {\text{ }} $ } } %Commande pour les vecteurs \newcommand{\grad}{\overrightarrow{Grad}} \newcommand{\Vv}{\overrightarrow{v}} \newcommand{\Vu}{\overrightarrow{u}} \newcommand{\Vw}{\overrightarrow{w}} \newcommand{\Vup}{\overrightarrow{u'}} \newcommand{\Zero}{\overrightarrow{0}} \newcommand{\Vx}{\overrightarrow{x}} \newcommand{\Vy}{\overrightarrow{y}} \newcommand{\Vz}{\overrightarrow{z}} \newcommand{\Vt}{\overrightarrow{t}} \newcommand{\Va}{\overrightarrow{a}} \newcommand{\Vb}{\overrightarrow{b}} \newcommand{\Vc}{\overrightarrow{c}} \newcommand{\Vd}{\overrightarrow{d}} \newcommand{\Ve}[1]{\overrightarrow{e_{#1}}} \newcommand{\Vf}[1]{\overrightarrow{f_{#1}}} \newcommand{\Vn}{\overrightarrow{0}} \newcommand{\Mat}{Mat} \newcommand{\Pass}{Pass} \newcommand{\mkF}{\mathfrak{F}} \renewcommand{\sp}{Sp} \newcommand{\Co}{Co} \newcommand{\vect}[1]{\texttt{Vect}\dpl{\left( #1\right)}} \newcommand{\prodscal}[2]{\dpl{\left\langle #1\left|\vphantom{#1 #2}\right. #2\right\rangle}} \newcommand{\trans}[1]{{\vphantom{#1}}^{t}{#1}} \newcommand{\ortho}[1]{{#1}^{\bot}} \newcommand{\oplusbot}{\overset{\bot}{\oplus}} \SelectTips{cm}{12}%Change le bout des flèches dans un xymatrix \newcommand{\pourDES}[8]{ \begin{itemize} \item Pour la ligne : le premier et dernier caractère forment $#1#2$ soit $#4$ en base 10. \item Pour la colonne : les autres caractères du bloc forment $#3$ soit $#5$ en base 10. \item A l'intersection de la ligne $#4+1$ et de la colonne $#5+1$ de $S_{#8}$ se trouve l'entier $#6$ qui, codé sur $4$ bits, est \textbf{\texttt{$#7$}}. \end{itemize} } \)
Exercice

L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.


Exercice


On considère la matrice \[ A= \begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 4 & \dfrac{9}{4} & -\dfrac{9}{2} & -5 & \dfrac{21}{5} & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & \dfrac{1}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & 2 & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & \dfrac{15}{2} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & -3 & 4 & -4 & \dfrac{20}{3}\end{pmatrix}\]
  1. Donner les mineurs d'ordre \( (2, 3)\) et \( (1, 5)\) : \( \widehat{A}_{2, 3}=\) \( \widehat{A}_{1, 5}=\)
  2. Expliquer pourquoi \( \det(A)=\det \begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 0 & -\dfrac{39}{4} & -\dfrac{31}{2} & -25 & -\dfrac{39}{5} & 15 \\ 0 & \dfrac{131}{6} & \dfrac{503}{24} & \dfrac{197}{6} & \dfrac{43}{2} & -\dfrac{75}{2} \\ 0 & -\dfrac{23}{2} & -\dfrac{7}{2} & -14 & -8 & 9 \\ 0 & \dfrac{351}{10} & \dfrac{291}{8} & \dfrac{107}{2} & \dfrac{353}{10} & -\dfrac{113}{2} \\ 0 & \dfrac{29}{4} & \dfrac{95}{16} & \dfrac{81}{4} & \dfrac{23}{4} & -\dfrac{115}{12}\end{pmatrix} \)
  3. Calculer \( \det(A)\) .
  4. Pourquoi la matrice \( A \) est inversible.
  5. Donner \( B=A^{-1}\) l'inverse de la matrice \( A \) , en ne détaillant que le calcul de \( A^{-1}_{3, 2}\) .
  6. Donner \( B^{-1}\) l'inverse de la matrice \( B\) . Justifier.
  7. Résoudre le système suivant. \( \left\{\begin{array}{*{7}{cr}} &x&+&3y &+&\dfrac{11}{4}z &+&5t &+&3u &-&5v &=&-\dfrac{8}{9}\\ &4x&+&\dfrac{9}{4}y &-&\dfrac{9}{2}z &-&5t &+&\dfrac{21}{5}u &-&5v &=&-8\\ &-\dfrac{15}{2}x&-&\dfrac{2}{3}y &+&\dfrac{1}{3}z &-&\dfrac{14}{3}t &-&u &&&=&\dfrac{29}{4}\\ &2x&-&\dfrac{11}{2}y &+&2z &-&4t &-&2u &-&v &=&8\\ &-\dfrac{21}{2}x&+&\dfrac{18}{5}y &+&\dfrac{15}{2}z &+&t &+&\dfrac{19}{5}u &-&4v &=&8\\ &-\dfrac{13}{4}x&-&\dfrac{5}{2}y &-&3z &+&4t &-&4u &+&\dfrac{20}{3}v &=&-2\\ \end{array} \right. \)
  8. Résoudre le système suivant. \( \left\{\begin{array}{*{7}{cr}} &-\dfrac{20045035008000000}{488822507424000000}x&-&\dfrac{82141558272000000}{1759761026726400000}y &-&\dfrac{99742938624000000}{1466467522272000000}z &-&\dfrac{32341068288000000}{1759761026726400000}t &-&\dfrac{75148881408000000}{1759761026726400000}u &-&\dfrac{184075835904000000}{1955290029696000000}v &=&-5\\ &\dfrac{4991196672000000}{175976102672640000}x&-&\dfrac{701871340032000000}{3519522053452800000}y &+&\dfrac{38341403136000000}{195529002969600000}z &-&\dfrac{927560719872000000}{3519522053452800000}t &-&\dfrac{628047862272000000}{3519522053452800000}u &-&\dfrac{161249730048000000}{586587008908800000}v &=&2\\ &-\dfrac{1709599882752000000}{1.7597610267264E+19}x&-&\dfrac{71635373568000000}{586587008908800000}y &-&\dfrac{237138513408000000}{2932935044544000000}z &-&\dfrac{4716983808000000}{3519522053452800000}t &+&\dfrac{156388796928000000}{3519522053452800000}u &-&\dfrac{404727860736000000}{2932935044544000000}v &=&8\\ &\dfrac{1404464168448000000}{1.1731740178176E+19}x&+&\dfrac{96044299776000000}{3519522053452800000}y &-&\dfrac{3.26081147904E+20}{9.3853921425408E+21}z &+&\dfrac{238220932608000000}{7039044106905600000}t &+&\dfrac{206153206272000000}{1.4078088213811E+19}u &+&\dfrac{364022678016000000}{2932935044544000000}v &=&8\\ &-\dfrac{88695046656000000}{293293504454400000}x&+&\dfrac{1108560121344000000}{3519522053452800000}y &-&\dfrac{2277945856512000000}{4692696071270400000}z &+&\dfrac{109213733376000000}{703904410690560000}t &+&\dfrac{543019728384000000}{1407808821381120000}u &+&\dfrac{619736375808000000}{2346348035635200000}v &=&8\\ &-\dfrac{898496644608000000}{2932935044544000000}x&+&\dfrac{3146853888000000}{156423202375680000}y &-&\dfrac{1041841046016000000}{3910580059392000000}z &-&\dfrac{1.0025242712064E+21}{2.8156176427622E+22}t &+&\dfrac{363462308352000000}{2346348035635200000}u &+&\dfrac{6.456258772992E+21}{2.8156176427622E+23}v &=&7\\ \end{array} \right. \)
Cliquer ici pour afficher la solution

Exercice


  1. \( \widehat{A}_{2, 3}=\begin{pmatrix}1 & 3 & 5 & 3 & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & 4 & -4 & \dfrac{20}{3}\end{pmatrix}\) \( \widehat{A}_{1, 5}=\begin{pmatrix}4 & \dfrac{9}{4} & -\dfrac{9}{2} & -5 & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & \dfrac{1}{3} & -\dfrac{14}{3} & 0 \\ 2 & -\dfrac{11}{2} & 2 & -4 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & \dfrac{15}{2} & 1 & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & -3 & 4 & \dfrac{20}{3}\end{pmatrix}\)
  2. On sait, d'après le cours, que l'on ne modifie la valeur du déterminant d'une matrice lorsqu'on ajoute à une ligne une combinaison linéaire des autres. On est donc partie de la matrice \( A\) et on a fait : \( L_{2}\leftarrow L_{2}-\left(4\right)L_1\) , \( L_{3}\leftarrow L_{3}-\left(-\dfrac{15}{2}\right)L_1\) , \( L_{4}\leftarrow L_{4}-\left(2\right)L_1\) , \( L_{5}\leftarrow L_{5}-\left(-\dfrac{21}{2}\right)L_1\) et \( L_{6}\leftarrow L_{6}-\left(-\dfrac{13}{4}\right)L_1\)
  3. En développant par rapport à la première colonne, en se servant de la précédente remarque on a \begin{eqnarray*} \det(A) &=&\det\begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 0 & -\dfrac{39}{4} & -\dfrac{31}{2} & -25 & -\dfrac{39}{5} & 15 \\ 0 & \dfrac{131}{6} & \dfrac{503}{24} & \dfrac{197}{6} & \dfrac{43}{2} & -\dfrac{75}{2} \\ 0 & -\dfrac{23}{2} & -\dfrac{7}{2} & -14 & -8 & 9 \\ 0 & \dfrac{351}{10} & \dfrac{291}{8} & \dfrac{107}{2} & \dfrac{353}{10} & -\dfrac{113}{2} \\ 0 & \dfrac{29}{4} & \dfrac{95}{16} & \dfrac{81}{4} & \dfrac{23}{4} & -\dfrac{115}{12}\end{pmatrix}\\ &=&1\times\det\begin{pmatrix}-\dfrac{39}{4} & -\dfrac{31}{2} & -25 & -\dfrac{39}{5} & 15 \\ \dfrac{131}{6} & \dfrac{503}{24} & \dfrac{197}{6} & \dfrac{43}{2} & -\dfrac{75}{2} \\ -\dfrac{23}{2} & -\dfrac{7}{2} & -14 & -8 & 9 \\ \dfrac{351}{10} & \dfrac{291}{8} & \dfrac{107}{2} & \dfrac{353}{10} & -\dfrac{113}{2} \\ \dfrac{29}{4} & \dfrac{95}{16} & \dfrac{81}{4} & \dfrac{23}{4} & -\dfrac{115}{12}\end{pmatrix}\\ &=&\dfrac{4888225074240000}{124416000000} \end{eqnarray*}
  4. On observe que le déterminant de \( A\) est non nul. D'après le cours, cela signifie que la matrice est inversible.
  5. D'après le cours \( B=A^{-1}=\left(\dfrac{4888225074240000}{124416000000}\right)^{-1}{}^tCo\begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 4 & \dfrac{9}{4} & -\dfrac{9}{2} & -5 & \dfrac{21}{5} & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & \dfrac{1}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & 2 & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & \dfrac{15}{2} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & -3 & 4 & -4 & \dfrac{20}{3}\end{pmatrix} =\dfrac{124416000000}{4888225074240000}\begin{pmatrix}-\dfrac{9.7984642740124E+31}{6.0817341083664E+28} & -\dfrac{4.0152642478234E+32}{2.1894242790119E+29} & -\dfrac{4.8756593356022E+32}{1.8245202325099E+29} & -\dfrac{1.5809042093311E+32}{2.1894242790119E+29} & -\dfrac{3.6734464639967E+32}{2.1894242790119E+29} & -\dfrac{8.9980411662762E+32}{2.4326936433466E+29} \\ \dfrac{2.4398092722534E+31}{2.1894242790119E+28} & -\dfrac{3.4309050832349E+33}{4.3788485580238E+29} & \dfrac{1.8742140819094E+32}{2.4326936433466E+28} & -\dfrac{4.5341255687584E+33}{4.3788485580238E+29} & -\dfrac{3.0700393081808E+33}{4.3788485580238E+29} & -\dfrac{7.8822497363506E+32}{7.2980809300397E+28} \\ -\dfrac{8.3569090137861E+33}{2.1894242790119E+30} & -\dfrac{3.5016982927765E+32}{7.2980809300397E+28} & -\dfrac{1.159186427309E+33}{3.6490404650199E+29} & -\dfrac{2.305767852505E+31}{4.3788485580238E+29} & \dfrac{7.6446363847368E+32}{4.3788485580238E+29} & -\dfrac{1.9784008770932E+33}{3.6490404650199E+29} \\ \dfrac{6.8653369640791E+33}{1.4596161860079E+30} & \dfrac{4.6948615440287E+32}{4.3788485580238E+29} & -\dfrac{1.5939580434213E+36}{1.1676929488064E+33} & \dfrac{1.1644775359833E+33}{8.7576971160477E+29} & \dfrac{1.0077232720338E+33}{1.7515394232095E+30} & \dfrac{1.7794247822698E+33}{3.6490404650199E+29} \\ -\dfrac{4.3356135102475E+32}{3.6490404650199E+28} & \dfrac{5.4188913814563E+33}{4.3788485580238E+29} & -\dfrac{1.1135112053563E+34}{5.8384647440318E+29} & \dfrac{5.3386130993993E+32}{8.7576971160477E+28} & \dfrac{2.6544026520937E+33}{1.7515394232095E+29} & \dfrac{3.0294108916433E+33}{2.9192323720159E+29} \\ -\dfrac{4.3920538272933E+33}{3.6490404650199E+29} & \dfrac{1.5382530080291E+31}{1.9461549146773E+28} & -\dfrac{5.0927535245078E+33}{4.8653872866932E+29} & -\dfrac{4.9005642800453E+36}{3.5030788464191E+33} & \dfrac{1.7766855692274E+33}{2.9192323720159E+29} & \dfrac{3.1559646019921E+37}{3.5030788464191E+34}\end{pmatrix} =\begin{pmatrix}-\dfrac{20045035008000000}{488822507424000000} & -\dfrac{82141558272000000}{1759761026726400000} & -\dfrac{99742938624000000}{1466467522272000000} & -\dfrac{32341068288000000}{1759761026726400000} & -\dfrac{75148881408000000}{1759761026726400000} & -\dfrac{184075835904000000}{1955290029696000000} \\ \dfrac{4991196672000000}{175976102672640000} & -\dfrac{701871340032000000}{3519522053452800000} & \dfrac{38341403136000000}{195529002969600000} & -\dfrac{927560719872000000}{3519522053452800000} & -\dfrac{628047862272000000}{3519522053452800000} & -\dfrac{161249730048000000}{586587008908800000} \\ -\dfrac{1709599882752000000}{1.7597610267264E+19} & -\dfrac{71635373568000000}{586587008908800000} & -\dfrac{237138513408000000}{2932935044544000000} & -\dfrac{4716983808000000}{3519522053452800000} & \dfrac{156388796928000000}{3519522053452800000} & -\dfrac{404727860736000000}{2932935044544000000} \\ \dfrac{1404464168448000000}{1.1731740178176E+19} & \dfrac{96044299776000000}{3519522053452800000} & -\dfrac{3.26081147904E+20}{9.3853921425408E+21} & \dfrac{238220932608000000}{7039044106905600000} & \dfrac{206153206272000000}{1.4078088213811E+19} & \dfrac{364022678016000000}{2932935044544000000} \\ -\dfrac{88695046656000000}{293293504454400000} & \dfrac{1108560121344000000}{3519522053452800000} & -\dfrac{2277945856512000000}{4692696071270400000} & \dfrac{109213733376000000}{703904410690560000} & \dfrac{543019728384000000}{1407808821381120000} & \dfrac{619736375808000000}{2346348035635200000} \\ -\dfrac{898496644608000000}{2932935044544000000} & \dfrac{3146853888000000}{156423202375680000} & -\dfrac{1041841046016000000}{3910580059392000000} & -\dfrac{1.0025242712064E+21}{2.8156176427622E+22} & \dfrac{363462308352000000}{2346348035635200000} & \dfrac{6.456258772992E+21}{2.8156176427622E+23}\end{pmatrix}\) . Précisément on a calculé \( A^{-1}_{3, 2}=B_{3, 2}= \left(\dfrac{4888225074240000}{124416000000}\right)^{-1}Co(A)_{2, 3}= \left(\dfrac{4888225074240000}{124416000000}\right)^{-1}\times(-1)^{2+3}\det\begin{pmatrix}1 & 3 & 5 & 3 & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & 4 & -4 & \dfrac{20}{3}\end{pmatrix}=-\dfrac{71635373568000000}{586587008908800000}\) .
  6. On observe que \( B^{-1}=\left(A^{-1}\right)^{-1}=A\) . Trivialement, et sans calcul, \[ B^{-1}=\begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 4 & \dfrac{9}{4} & -\dfrac{9}{2} & -5 & \dfrac{21}{5} & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & \dfrac{1}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & 2 & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & \dfrac{15}{2} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & -3 & 4 & -4 & \dfrac{20}{3}\end{pmatrix}\]
  7. Le système \( \left\{\begin{array}{*{7}{cr}} &x&+&3y &+&\dfrac{11}{4}z &+&5t &+&3u &-&5v &=&-\dfrac{8}{9}\\ &4x&+&\dfrac{9}{4}y &-&\dfrac{9}{2}z &-&5t &+&\dfrac{21}{5}u &-&5v &=&-8\\ &-\dfrac{15}{2}x&-&\dfrac{2}{3}y &+&\dfrac{1}{3}z &-&\dfrac{14}{3}t &-&u &&&=&\dfrac{29}{4}\\ &2x&-&\dfrac{11}{2}y &+&2z &-&4t &-&2u &-&v &=&8\\ &-\dfrac{21}{2}x&+&\dfrac{18}{5}y &+&\dfrac{15}{2}z &+&t &+&\dfrac{19}{5}u &-&4v &=&8\\ &-\dfrac{13}{4}x&-&\dfrac{5}{2}y &-&3z &+&4t &-&4u &+&\dfrac{20}{3}v &=&-2\\ \end{array} \right.\) est équivalent à l'équation \( AX=a\) où la matrice \( A\) est celle de l'énoncé, \( X\) la matrice colonne des indéterminés et \( a=\begin{pmatrix}-\dfrac{8}{9} \\ -8 \\ \dfrac{29}{4} \\ 8 \\ 8 \\ -2\end{pmatrix}\) de sorte que la solution est \( X=A^{-1}a=\begin{pmatrix}-\dfrac{20045035008000000}{488822507424000000} & -\dfrac{82141558272000000}{1759761026726400000} & -\dfrac{99742938624000000}{1466467522272000000} & -\dfrac{32341068288000000}{1759761026726400000} & -\dfrac{75148881408000000}{1759761026726400000} & -\dfrac{184075835904000000}{1955290029696000000} \\ \dfrac{4991196672000000}{175976102672640000} & -\dfrac{701871340032000000}{3519522053452800000} & \dfrac{38341403136000000}{195529002969600000} & -\dfrac{927560719872000000}{3519522053452800000} & -\dfrac{628047862272000000}{3519522053452800000} & -\dfrac{161249730048000000}{586587008908800000} \\ -\dfrac{1709599882752000000}{1.7597610267264E+19} & -\dfrac{71635373568000000}{586587008908800000} & -\dfrac{237138513408000000}{2932935044544000000} & -\dfrac{4716983808000000}{3519522053452800000} & \dfrac{156388796928000000}{3519522053452800000} & -\dfrac{404727860736000000}{2932935044544000000} \\ \dfrac{1404464168448000000}{1.1731740178176E+19} & \dfrac{96044299776000000}{3519522053452800000} & -\dfrac{3.26081147904E+20}{9.3853921425408E+21} & \dfrac{238220932608000000}{7039044106905600000} & \dfrac{206153206272000000}{1.4078088213811E+19} & \dfrac{364022678016000000}{2932935044544000000} \\ -\dfrac{88695046656000000}{293293504454400000} & \dfrac{1108560121344000000}{3519522053452800000} & -\dfrac{2277945856512000000}{4692696071270400000} & \dfrac{109213733376000000}{703904410690560000} & \dfrac{543019728384000000}{1407808821381120000} & \dfrac{619736375808000000}{2346348035635200000} \\ -\dfrac{898496644608000000}{2932935044544000000} & \dfrac{3146853888000000}{156423202375680000} & -\dfrac{1041841046016000000}{3910580059392000000} & -\dfrac{1.0025242712064E+21}{2.8156176427622E+22} & \dfrac{363462308352000000}{2346348035635200000} & \dfrac{6.456258772992E+21}{2.8156176427622E+23}\end{pmatrix}\times\begin{pmatrix}-\dfrac{8}{9} \\ -8 \\ \dfrac{29}{4} \\ 8 \\ 8 \\ -2\end{pmatrix}=\begin{pmatrix}-\dfrac{1.0548569797717E+110}{2.7497829553647E+110} \\ \dfrac{1.7928612293962E+107}{3.1677499645802E+109} \\ \dfrac{4.3472956760839E+112}{3.9596874557252E+112} \\ -\dfrac{1.7717334097488E+117}{4.0547199546626E+117} \\ -\dfrac{7.994178273506E+110}{4.0547199546626E+110} \\ -\dfrac{1.0952074528615E+120}{1.2013985050852E+120}\end{pmatrix}\) . Ainsi \( x=\dfrac{1.0548569797717E+110}{2.7497829553647E+110}\) , \( y=\dfrac{1.7928612293962E+107}{3.1677499645802E+109}\) , \( z=\dfrac{4.3472956760839E+112}{3.9596874557252E+112}\) , \( t=\dfrac{1.7717334097488E+117}{4.0547199546626E+117}\) , \( u=\dfrac{7.994178273506E+110}{4.0547199546626E+110}\) et \( v=\dfrac{1.0952074528615E+120}{1.2013985050852E+120}\)
  8. Le système \( \left\{\begin{array}{*{7}{cr}} &-\dfrac{20045035008000000}{488822507424000000}x&-&\dfrac{82141558272000000}{1759761026726400000}y &-&\dfrac{99742938624000000}{1466467522272000000}z &-&\dfrac{32341068288000000}{1759761026726400000}t &-&\dfrac{75148881408000000}{1759761026726400000}u &-&\dfrac{184075835904000000}{1955290029696000000}v &=&-5\\ &\dfrac{4991196672000000}{175976102672640000}x&-&\dfrac{701871340032000000}{3519522053452800000}y &+&\dfrac{38341403136000000}{195529002969600000}z &-&\dfrac{927560719872000000}{3519522053452800000}t &-&\dfrac{628047862272000000}{3519522053452800000}u &-&\dfrac{161249730048000000}{586587008908800000}v &=&2\\ &-\dfrac{1709599882752000000}{1.7597610267264E+19}x&-&\dfrac{71635373568000000}{586587008908800000}y &-&\dfrac{237138513408000000}{2932935044544000000}z &-&\dfrac{4716983808000000}{3519522053452800000}t &+&\dfrac{156388796928000000}{3519522053452800000}u &-&\dfrac{404727860736000000}{2932935044544000000}v &=&8\\ &\dfrac{1404464168448000000}{1.1731740178176E+19}x&+&\dfrac{96044299776000000}{3519522053452800000}y &-&\dfrac{3.26081147904E+20}{9.3853921425408E+21}z &+&\dfrac{238220932608000000}{7039044106905600000}t &+&\dfrac{206153206272000000}{1.4078088213811E+19}u &+&\dfrac{364022678016000000}{2932935044544000000}v &=&8\\ &-\dfrac{88695046656000000}{293293504454400000}x&+&\dfrac{1108560121344000000}{3519522053452800000}y &-&\dfrac{2277945856512000000}{4692696071270400000}z &+&\dfrac{109213733376000000}{703904410690560000}t &+&\dfrac{543019728384000000}{1407808821381120000}u &+&\dfrac{619736375808000000}{2346348035635200000}v &=&8\\ &-\dfrac{898496644608000000}{2932935044544000000}x&+&\dfrac{3146853888000000}{156423202375680000}y &-&\dfrac{1041841046016000000}{3910580059392000000}z &-&\dfrac{1.0025242712064E+21}{2.8156176427622E+22}t &+&\dfrac{363462308352000000}{2346348035635200000}u &+&\dfrac{6.456258772992E+21}{2.8156176427622E+23}v &=&7\\ \end{array} \right.\) est équivalent à l'équation \( BX=b\) où la matrice \( B=A^{-1}\) déterminée précédement, \( X\) la matrice colonne des indéterminés et \( b=\begin{pmatrix}-5 \\ 2 \\ 8 \\ 8 \\ 8 \\ 7\end{pmatrix}\) de sorte que la solution est \( X=B^{-1}b=Ab=\begin{pmatrix}1 & 3 & \dfrac{11}{4} & 5 & 3 & -5 \\ 4 & \dfrac{9}{4} & -\dfrac{9}{2} & -5 & \dfrac{21}{5} & -5 \\ -\dfrac{15}{2} & -\dfrac{2}{3} & \dfrac{1}{3} & -\dfrac{14}{3} & -1 & 0 \\ 2 & -\dfrac{11}{2} & 2 & -4 & -2 & -1 \\ -\dfrac{21}{2} & \dfrac{18}{5} & \dfrac{15}{2} & 1 & \dfrac{19}{5} & -4 \\ -\dfrac{13}{4} & -\dfrac{5}{2} & -3 & 4 & -4 & \dfrac{20}{3}\end{pmatrix}\times\begin{pmatrix}-5 \\ 2 \\ 8 \\ 8 \\ 8 \\ 7\end{pmatrix}=\begin{pmatrix}52 \\ -\dfrac{929}{10} \\ -\dfrac{13}{2} \\ -60 \\ \dfrac{1301}{10} \\ \dfrac{407}{12}\end{pmatrix}\) . Ainsi \( x=52\) , \( y=\dfrac{929}{10}\) , \( z=\dfrac{13}{2}\) , \( t=60\) , \( u=\dfrac{1301}{10}\) et \( v=\dfrac{407}{12}\)