L'exercice suivant est automatiquement et aléatoirement généré par ataraXy.
Si vous regénérez la page (F5) les valeurs seront changées.
La correction se trouve en bas de page.
Exercice
Soit \( X=\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(0\right)\sqrt{50}\right)-\left(\left(-3\right)\sqrt{8}\right)-\left(\left(0\right)\sqrt{50}\right)\right)-\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(\dfrac{20}{9}\right)\sqrt{8}\right)-\left(\left(6\right)\sqrt{4}\right)\right)\) et \( Y=\left(\left(-\dfrac{15}{7}\right)\sqrt{18}\right)-\left(0-\left(\left(-9\right)\sqrt{18}\right)-\left(\left(\dfrac{59}{2}\right)\sqrt{4}\right)-9\right)-\left(\left(-\dfrac{15}{4}\right)\sqrt{18}+\left(\dfrac{37}{2}\right)\sqrt{4}+\left(8\right)\sqrt{18}+\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\left(\dfrac{64}{7}\right)\sqrt{50}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\dfrac{79}{4}\right)\sqrt{4}\right)\right)\) . Calculer et simplifier \( X+Y\) , \( X-Y\) et \( X\times Y\) .
Cliquer ici pour afficher la solution
Exercice
\begin{eqnarray*}
X+Y
&=&\left(\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(0\right)\sqrt{50}\right)-\left(\left(-3\right)\sqrt{8}\right)-\left(\left(0\right)\sqrt{50}\right)\right)-\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(\dfrac{20}{9}\right)\sqrt{8}\right)-\left(\left(6\right)\sqrt{4}\right)\right)\right)+\left(\left(\left(-\dfrac{15}{7}\right)\sqrt{18}\right)-\left(0-\left(\left(-9\right)\sqrt{18}\right)-\left(\left(\dfrac{59}{2}\right)\sqrt{4}\right)-9\right)-\left(\left(-\dfrac{15}{4}\right)\sqrt{18}+\left(\dfrac{37}{2}\right)\sqrt{4}+\left(8\right)\sqrt{18}+\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\left(\dfrac{64}{7}\right)\sqrt{50}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\dfrac{79}{4}\right)\sqrt{4}\right)\right)\right)\\
&=&\left(\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)-\left(\left(-6\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)\right)-\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(\dfrac{40}{9}\right)\sqrt{2}\right)-12\right)\right)+\left(\left(\left(-\dfrac{45}{7}\right)\sqrt{2}\right)-\left(0-\left(\left(-27\right)\sqrt{2}\right)-59-9\right)-\left(\left(-\dfrac{45}{4}\right)\sqrt{2}+37+\left(24\right)\sqrt{2}+\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\left(\left(\left(\dfrac{320}{7}\right)\sqrt{2}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\dfrac{79}{2}\right)\right)\\
&=&\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)-\left(\left(-6\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)\right)-\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(\dfrac{40}{9}\right)\sqrt{2}\right)-12\right)+\left(\left(-\dfrac{45}{7}\right)\sqrt{2}\right)-\left(0-\left(\left(-27\right)\sqrt{2}\right)-59-9\right)-\left(\left(-\dfrac{45}{4}\right)\sqrt{2}+37+\left(24\right)\sqrt{2}+\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\left(\left(\left(\dfrac{320}{7}\right)\sqrt{2}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\dfrac{79}{2}\right)\\
&=&\left(-\dfrac{20525}{252}\right)\sqrt{2}+\dfrac{1149}{14}\\
\end{eqnarray*}
\begin{eqnarray*}
X-Y
&=&\left(\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(0\right)\sqrt{50}\right)-\left(\left(-3\right)\sqrt{8}\right)-\left(\left(0\right)\sqrt{50}\right)\right)-\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(\dfrac{20}{9}\right)\sqrt{8}\right)-\left(\left(6\right)\sqrt{4}\right)\right)\right)-\left(\left(\left(-\dfrac{15}{7}\right)\sqrt{18}\right)-\left(0-\left(\left(-9\right)\sqrt{18}\right)-\left(\left(\dfrac{59}{2}\right)\sqrt{4}\right)-9\right)-\left(\left(-\dfrac{15}{4}\right)\sqrt{18}+\left(\dfrac{37}{2}\right)\sqrt{4}+\left(8\right)\sqrt{18}+\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\left(\dfrac{64}{7}\right)\sqrt{50}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\dfrac{79}{4}\right)\sqrt{4}\right)\right)\right)\\
&=&\left(\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)-\left(\left(-6\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)\right)-\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(\dfrac{40}{9}\right)\sqrt{2}\right)-12\right)\right)-\left(\left(\left(-\dfrac{45}{7}\right)\sqrt{2}\right)-\left(0-\left(\left(-27\right)\sqrt{2}\right)-59-9\right)-\left(\left(-\dfrac{45}{4}\right)\sqrt{2}+37+\left(24\right)\sqrt{2}+\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\left(\left(\left(\dfrac{320}{7}\right)\sqrt{2}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\dfrac{79}{2}\right)\right)\\
&=&\left(\left(\dfrac{94}{9}\right)\sqrt{2}+12\right)-\left(\left(-\dfrac{2573}{28}\right)\sqrt{2}+\dfrac{981}{14}\right)\\
&=&\left(\dfrac{94}{9}\right)\sqrt{2}+12+\left(\dfrac{2573}{28}\right)\sqrt{2}-\dfrac{981}{14}\\
&=&\left(\dfrac{25789}{252}\right)\sqrt{2}-\dfrac{813}{14}\\
\end{eqnarray*}
\begin{eqnarray*}
X\times Y
&=&\left(\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(0\right)\sqrt{50}\right)-\left(\left(-3\right)\sqrt{8}\right)-\left(\left(0\right)\sqrt{50}\right)\right)-\left(\left(\left(0\right)\sqrt{18}\right)-\left(\left(\dfrac{20}{9}\right)\sqrt{8}\right)-\left(\left(6\right)\sqrt{4}\right)\right)\right)\times\left(\left(\left(-\dfrac{15}{7}\right)\sqrt{18}\right)-\left(0-\left(\left(-9\right)\sqrt{18}\right)-\left(\left(\dfrac{59}{2}\right)\sqrt{4}\right)-9\right)-\left(\left(-\dfrac{15}{4}\right)\sqrt{18}+\left(\dfrac{37}{2}\right)\sqrt{4}+\left(8\right)\sqrt{18}+\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\left(\dfrac{64}{7}\right)\sqrt{50}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{53}{3}\right)\sqrt{50}\right)-\left(\left(\dfrac{79}{4}\right)\sqrt{4}\right)\right)\right)\\
&=&\left(\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)-\left(\left(-6\right)\sqrt{2}\right)-\left(\left(0\right)\sqrt{2}\right)\right)-\left(\left(\left(0\right)\sqrt{2}\right)-\left(\left(\dfrac{40}{9}\right)\sqrt{2}\right)-12\right)\right)\times\left(\left(\left(-\dfrac{45}{7}\right)\sqrt{2}\right)-\left(0-\left(\left(-27\right)\sqrt{2}\right)-59-9\right)-\left(\left(-\dfrac{45}{4}\right)\sqrt{2}+37+\left(24\right)\sqrt{2}+\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\left(\left(\left(\dfrac{320}{7}\right)\sqrt{2}\right)+\dfrac{3}{7}-\left(\left(-\dfrac{265}{3}\right)\sqrt{2}\right)-\dfrac{79}{2}\right)\right)\\
&=&\left(\left(\dfrac{94}{9}\right)\sqrt{2}+12\right)\left(\left(-\dfrac{2573}{28}\right)\sqrt{2}+\dfrac{981}{14}\right)\\
&=&\left(-\dfrac{120931}{126}\right)\sqrt{4}+\left(-\dfrac{2596}{7}\right)\sqrt{2}+\dfrac{5886}{7}\\
&=&-\dfrac{67957}{63}+\left(-\dfrac{2596}{7}\right)\sqrt{2}\\
\end{eqnarray*}